Keeping in touch with the visual system: spatial alignment and multisensory integration of visual-somatosensory inputs
نویسندگان
چکیده
Correlated sensory inputs coursing along the individual sensory processing hierarchies arrive at multisensory convergence zones in cortex where inputs are processed in an integrative manner. The exact hierarchical level of multisensory convergence zones and the timing of their inputs are still under debate, although increasingly, evidence points to multisensory integration (MSI) at very early sensory processing levels. While MSI is said to be governed by stimulus properties including space, time, and magnitude, violations of these rules have been documented. The objective of the current study was to determine, both psychophysically and electrophysiologically, whether differential visual-somatosensory (VS) integration patterns exist for stimuli presented to the same versus opposite hemifields. Using high-density electrical mapping and complementary psychophysical data, we examined multisensory integrative processing for combinations of visual and somatosensory inputs presented to both left and right spatial locations. We assessed how early during sensory processing VS interactions were seen in the event-related potential and whether spatial alignment of the visual and somatosensory elements resulted in differential integration effects. Reaction times to all VS pairings were significantly faster than those to the unisensory conditions, regardless of spatial alignment, pointing to engagement of integrative multisensory processing in all conditions. In support, electrophysiological results revealed significant differences between multisensory simultaneous VS and summed V + S responses, regardless of the spatial alignment of the constituent inputs. Nonetheless, multisensory effects were earlier in the aligned conditions, and were found to be particularly robust in the case of right-sided inputs (beginning at just 55 ms). In contrast to previous work on audio-visual and audio-somatosensory inputs, the current work suggests a degree of spatial specificity to the earliest detectable multisensory integrative effects in response to VS pairings.
منابع مشابه
Multimodal visual-somatosensory integration in saccade generation.
Neurophysiological studies have demonstrated multisensory interaction effects in the neural structures involved in saccade generation when visual, auditory or somatosensory stimuli are presented bimodally. Visual-auditory interaction effects have been demonstrated in numerous behavioural studies of saccades but little is known about interaction effects involving somatosensory stimuli. The prese...
متن کاملAn ERP Investigation on Visuotactile Interactions in Peripersonal and Extrapersonal Space: Evidence for the Spatial Rule
The spatial rule of multisensory integration holds that cross-modal stimuli presented from the same spatial location result in enhanced multisensory integration. The present study investigated whether processing within the somatosensory cortex reflects the strength of cross-modal visuotactile interactions depending on the spatial relationship between visual and tactile stimuli. Visual stimuli w...
متن کاملTMS of posterior parietal cortex disrupts visual tactile multisensory integration.
Functional neuroimaging studies have implicated a number of brain regions, especially the posterior parietal cortex (PPC), as being potentially important for visual-tactile multisensory integration. However, neuroimaging studies are correlational and do not prove the necessity of a region for the behavioral improvements that are the hallmark of multisensory integration. To remedy this knowledge...
متن کاملThe neural mechanisms of reliability weighted integration of shape information from vision and touch
Behaviourally, humans have been shown to integrate multisensory information in a statistically-optimal fashion by averaging the individual unisensory estimates according to their relative reliabilities. This form of integration is optimal in that it yields the most reliable (i.e. least variable) multisensory percept. The present study investigates the neural mechanisms underlying integration of...
متن کاملMultisensory Interactions between Vestibular, Visual and Somatosensory Signals
Vestibular inputs are constantly processed and integrated with signals from other sensory modalities, such as vision and touch. The multiply-connected nature of vestibular cortical anatomy led us to investigate whether vestibular signals could participate in a multi-way interaction with visual and somatosensory perception. We used signal detection methods to identify whether vestibular stimulat...
متن کامل